Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Microbiol ; 70(4): 119-127, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176008

RESUMO

Helicobacter pylori resistance to antibiotics is a growing problem and it increasingly leads to treatment failure. While the bacterium is present worldwide, the severity of clinical outcomes is highly dependent on the geographical origin and genetic characteristics of the strains. One of the major virulence factors identified in H. pylori is the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) used to translocate effectors into human cells. Here, we investigated the genetic variability of the cagPAI among 13 antibiotic-resistant H. pylori strains that were isolated from patient biopsies in Québec. Seven of the clinical strains carried the cagPAI, but only four could be readily cultivated under laboratory conditions. We observed variability of the sequences of CagA and CagL proteins that are encoded by the cagPAI. All clinical isolates induce interleukin-8 secretion and morphological changes upon co-incubation with gastric cancer cells and two of them produce extracellular T4SS pili. Finally, we demonstrate that molecule 1G2, a small molecule inhibitor of the Cagα protein from the model strain H. pylori 26695, reduces interleukin-8 secretion in one of the clinical isolates. Co-incubation with 1G2 also inhibits the assembly of T4SS pili, suggesting a mechanism for its action on T4SS function.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antígenos de Bactérias/genética , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Interleucina-8/metabolismo , Infecções por Helicobacter/microbiologia
2.
Sci Rep ; 9(1): 6474, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019200

RESUMO

Type IV secretion systems are multiprotein complexes that mediate the translocation of macromolecules across the bacterial cell envelope. In Helicobacter pylori a type IV secretion system encoded by the cag pathogenicity island encodes 27 proteins and most are essential for virulence. We here present the identification and characterization of inhibitors of Cagα, a hexameric ATPase and member of the family of VirB11-like proteins that is essential for translocation of the CagA cytotoxin into mammalian cells. We conducted fragment-based screening using a differential scanning fluorimetry assay and identified 16 molecules that stabilize the protein suggesting that they bind Cagα. Several molecules affect binding of ADP and four of them inhibit the ATPase activity. Analysis of enzyme kinetics suggests that their mode of action is non-competitive, suggesting that they do not bind to the active site. Cross-linking suggests that the active molecules change protein conformation and gel filtration and transmission electron microscopy show that molecule 1G2 dissociates the Cagα hexamer. Addition of the molecule 1G2 inhibits the induction of interleukin-8 production in gastric cancer cells after co-incubation with H. pylori suggesting that it inhibits Cagα in vivo. Our results reveal a novel mechanism for the inhibition of the ATPase activity of VirB11-like proteins.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Helicobacter pylori/metabolismo , Multimerização Proteica/efeitos dos fármacos , Sistemas de Secreção Tipo IV/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/isolamento & purificação , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Ensaios de Triagem em Larga Escala/métodos , Humanos , Interleucina-8/metabolismo , Conformação Proteica/efeitos dos fármacos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Virulência
3.
Biochemistry ; 56(17): 2261-2270, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28414460

RESUMO

In mammalian cells, the incorporation of the 21st amino acid, selenocysteine, into proteins is guided by the Sec machinery. The function of this protein complex requires several protein-protein and protein-RNA interactions, leading to the incorporation of selenocysteine at UGA codons. It is guided by stem-loop structures localized in the 3' untranslated regions of the selenoprotein-encoding genes. Here, we conducted a global analysis of interactions between the Sec biosynthesis and incorporation components using a bioluminescence resonance energy transfer assay in mammalian cells that showed that selenocysteine synthase (SEPSECS), SECp43, and selenophosphate synthetases SEPHS1 and SEPHS2 form oligomers in eukaryotic cells. We also showed that SEPHS2 interacts with SEPSECS and SEPHS1; these interactions were confirmed by co-immunoprecipitation. To further analyze the interactions of SECp43, the protein was expressed in Escherichia coli, and small-angle X-ray scattering analysis revealed that it is a globular protein comprising two RNA-binding domains. Using phage display, we identified potential interaction sites and highlighted two residues (K166 and P167) required for its dimerization. The SECp43 structural model presented here constitutes the basis of future exploration of the protein-protein interactions among early components of the selenocysteine biosynthesis and incorporation pathway.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Modelos Moleculares , Fosfotransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transferases/metabolismo , Substituição de Aminoácidos , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Técnicas de Visualização da Superfície Celular , Reagentes de Ligações Cruzadas/farmacologia , Dimerização , Células HEK293 , Humanos , Imunoprecipitação , Mutação , Proteínas Nucleares , Fosfotransferases/química , Fosfotransferases/genética , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Espalhamento a Baixo Ângulo , Succinimidas/farmacologia , Transferases/química , Transferases/genética , Difração de Raios X
4.
Nat Commun ; 6: 6148, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25649206

RESUMO

Formate dehydrogenases (FDHs) are of interest as they are natural catalysts that sequester atmospheric CO2, generating reduced carbon compounds with possible uses as fuel. FDHs activity in Escherichia coli strictly requires the sulphurtransferase EcFdhD, which likely transfers sulphur from IscS to the molybdenum cofactor (Mo-bisPGD) of FDHs. Here we show that EcFdhD binds Mo-bisPGD in vivo and has submicromolar affinity for GDP-used as a surrogate of the molybdenum cofactor's nucleotide moieties. The crystal structure of EcFdhD in complex with GDP shows two symmetrical binding sites located on the same face of the dimer. These binding sites are connected via a tunnel-like cavity to the opposite face of the dimer where two dynamic loops, each harbouring two functionally important cysteine residues, are present. On the basis of structure-guided mutagenesis, we propose a model for the sulphuration mechanism of Mo-bisPGD where the sulphur atom shuttles across the chaperone dimer.


Assuntos
Coenzimas/química , Escherichia coli/metabolismo , Formiato Desidrogenases/química , Guanosina Difosfato/química , Hidrogenase/química , Chaperonas Moleculares/química , Molibdênio/química , Complexos Multienzimáticos/química , Sítios de Ligação , Biocatálise , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Liases de Carbono-Enxofre/metabolismo , Clonagem Molecular , Coenzimas/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Formiatos/química , Formiatos/metabolismo , Expressão Gênica , Guanosina Difosfato/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Molibdênio/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Oxirredução , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Enxofre/química , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...